Types Are Not Harmless

Leslie Lamport
lamport@src.dec.com

Tue 18 Jul 1995 [16:03]

Contents
1 Introduction

2 Math Without Types
2.1 Logic . . . o o e e
2.2 Set Theory e
2.3 Functions L
2.4 Examples
2.5 Whatis 1/07
2.6 Semantic Types Lo

3 Types
3.1 Polymorphism oL oo
3.2 Types as Abbreviations L.

4 The Trouble with Types
4.1 Fine Type Systems oo
4.2 Coarse Type Systems
4.2.1 Partial Functionso o000
4.2.2 Total Functions
4.2.3 PureSyntax. o0

5 Do Types Help?

6 Conclusion

10

10
12
13
13
14
14

15

16

1 Introduction

Types have become ubiquitous in computer science. Because the advantages
of typed programming languages are so obvious, most computer scientists
assume that mathematics should be formalized with types. They seem un-
aware of the harm that types inflict on the simplicity and elegance of math-
ematics. Some even feel that mathematics cannot be formalized without
types. I believe that types do more harm than good in a formal system for
mathematical reasoning. I do not expect many readers to agree with this
conclusion. But, I hope to demonstrate that types are neither harmless nor
necessary, and that their use in mathematics needs to be justified.

It is quite easy to formalize mathematics using sets and operators. Sec-
tion 2 describes a formalism that I call ZFM (ZF for Mathematics). This
section will seem excruciatingly obvious to some readers, since ZFM is a
straightforward formalization of everyday mathematics. However, 1 have
found that many computer scientists think that a typeless set theory must
harbor logical inconsistencies.

Section 3 describes how the concepts of mathematics are expressed in
typed formalisms, and Section 4 discusses some problems that types intro-
duce. These problems arise in an of area of particular concern to computer
scientists—formal reasoning about programs. I expect them to occur in
more conventional branches of mathematics as well.

The problems raised by types are not insurmountable. Each problem
that I describe can be solved in most type systems. But, the solutions add
complexity and make a formalism harder to use. The question I wish to
raise is not how type systems can solve these problems, but whether the
benefits types provide offset the harm they do. Section 5 discusses what
those benefits might be.

2 Math Without Types

There are a number of ways to formalize mathematics without using types.
The formalism I call ZFM is the one I find to be the simplest and most
natural way to capture ordinary mathematical reasoning. 1 describe it in-
formally; the formal definition of ZFM should be a straightforward exercise
for a mathematician familiar with the foundations of logic and set theory.

2.1 Logic

ZFM is based on first-order predicate logic with equality. Its formulas con-
tain variables, quantifiers, and operators. Each operator has a signature,
defined in terms of the primitive signatures term and formula. For ex-
ample, the equality operator (=) has signature term X term — formula.
Quantification is only over variables, which have signature term.!

ZFM also includes Hilbert’s € operator [1], which I call choose. The
expression choose z : P(z) denotes an arbitrary value z that satisfies P(z),
if one exists; otherwise it denotes a completely arbitrary value. The choose
operator satisfies the following axiom schemas (= is implication and = is
the boolean operator “if and only if”).

F(3z:P(z)) = P(choose z: P(z))
F(Ve:P(z) = Q(z)) = (choose z: P(z)) = (choose z: Q(z))

Mathematicians need to define new operators in terms of the primitive ones
provided by a formalism. ZFM takes the simple view that definitions are
purely syntactic. For example, writing F(z) 23y G(z,y) makes F(e)
an abbreviation for 3y : G(e, y), for any expression e. An operator can
be defined only in terms of primitive operators and operators that have
already been defined. (Recursion is discussed below.) Thus, by replacing
defined symbols with their definitions, any expression can be reduced to
one containing only the primitive operators of ZFFM. A definition cannot
introduce unsoundness, so we never have to prove a theorem in order to
make a definition. However, we may have to prove that a defined operator
has the properties we want.

One useful operator is the if/then/else construct, which has signature
Jormula x term X term — term. It is defined by

if pthen ¢; else ¢ = choose z:(pA(z=e;))V (=p A (z = €3))

2.2 Set Theory

The primitive operators of ZFM include the ones of Zermelo-Fraenkel set
theory [2]. ZFM uses the simplest form of set theory, in which everything

'Bound variables introduce complications. A simpler formalism can be obtained by
eliminating them. For example, the formula 3z : 3y : P(z, y) can be replaced by 3 (3(Q)),
where @ is the operator of sort term — (term — formula) such that Q(z)(y) equals
P(z,y). Such a formalism is less convenient in practice, so ZEM uses bound variables.
However, thinking of ZFM as based on an underlying formalism with no bound variables
can help clarify some subtle points, such as the meaning of substitution.

= * € ¢ 0 u N - \ [set difference]

{e1,....e,} [Set consisting of elements e;]

{r € 5 : P(z)} [Setof elements z in S satisfying P(z)]

{e(z) : © € S} [Set of elements e(z) such that z in 5]

25 [Set of subsets of 5]

Us [Union of all elements of S]

(e1,...,€n) [The n-tuple whose i*® component is e;]

Sy x...x 8, [The set of all n-tuples with i** component in 5]

Figure 1: The operators of set theory.

is a set. Thus, the number 2 is a set, though we usually don’t think of it
as one because we don’t care what its elements are. The phrase “the set
2”7 seems strange, so | let value be synonymous with set and refer to 2 as a
value.

Figure 1 describes a collection of operators from set theory that I have
found adequate for ordinary mathematics. Some of these operators are de-
fined in terms of the others; the rest are primitive and are effectively defined
by axioms. For example, the Separation Axiom [2, page 325] asserts that,
for any set S, the collection {z € S : P(z)} of all elements of S satisfying
P(z) is a set.? It makes no practical difference which of these operators are
taken to be primitive. (They can all be defined in terms of €.)

For most uses of ZFM, it suffices to understand the meanings of the oper-
ators of Figure 1, and to know that two sets are equal iff they have the same
elements. Formally, we need axioms to guarantee the existence of “enough”
distinct sets. For computer science, it seems necessary only to assume an
axiom of infinity that implies the existence of the natural numbers. More
sophisticated mathematical applications may need the Axiom of Choice [2,
page 335].%

Naive informal reasoning about sets can be unsound. In ZFM, soundness
is guaranteed by restricting how one can construct sets. First order logic
with the operators of Figure 1, and the corresponding axioms, is sound. For
example, Russell’s paradox is avoided because the “set” R of all sets that
are not elements of themselves, which satisfies R € R iff it satisfies R ¢ R,
cannot be expressed with the operators of Figure 1.

2This axiom is valid only because S is considered to lie outside the scope of the bound
variable z. Similarly, S lies outside the scope of z in {e(z): 2z € S}.
®The axioms for the choose operator are independent of the Axiom of Choice.

2.3 Functions

Mathematicians usually define a function to be a set of ordered pairs. For-
mally, one can define the operator Apply by

Apply(f,z) 2 choosey : (z,y) € f

and let f(z) be an abbreviation for Apply(f,z). It doesn’t matter how
functions are defined. I prefer simply to regard the four operators of Figure 2
as primitive, where | write f[z] instead of the customary f(z) to distinguish
function application from operator application.* A function f has a domain,
which is the set written dom f. The set [S — 7' consists of all functions f
such that dom f = S and f[z] € T for all z € S. The notation [z € S5 —
e(z)] is used to describe a function explicitly. For example, if R is the set
of real numbers, then [r € R\{0} — 1/r] is the reciprocal function, whose
domain is the set R\{0} of nonzero reals.

Functions can be defined recursively using the choose operator. For
example, the factorial function fact is defined by

fact = choosef :f =[n €N — if n=0 then 1 else n-f[n—1]]
where N is the set of natural numbers. I write this definition as
fact[n:N] = if n =0 then 1 else n - fact[n—1]

In general, f[z: 5] = e(z) defines f to equal choose f:f =[z € 5 — e(z)].
To deduce that f is a function with domain S, we must prove that there
exists a function f that equals [z € S +— e(z)]. This is the same proof
that is often cited as a requirement for the definition to be legal. In ZFM,
definitions are always legal; proofs are needed only to deduce properties of
the definiendum.

“One could use f(z) for both, since the signature of f determines which is meant.

fle] [Function application]

dom f [Domain of the function f]

[S — T [Set of functions with domain S and range a subset of T
[

[z € S+ e(2)] [Function f such that f[z] = e(z) for z € 5]

Figure 2: Operators for expressing functions

Functions are different from operators.> A function f has a domain,

and we can define the value of f[z] only for elements z in its domain. The
expression fact[y/2], which is an abbreviation for Apply(fact,+/2), is syntac-
tically a term, so it denotes a value. However, we don’t know what value.
It need not equal /2 - fact[v/2 — 1]. It need not even be a number. But,
whatever its value, it must equal fact[2/v/2], since v/2 equals 2/v/2. Func-
tions are just like other values; for example, fact by itself is syntactically a
term. We can quantify over sets of functions, writing expressions such as
Vf € [R—= R]:|f]e > 0.6

Operators are different from functions. Consider the operator | J, where
(J.S is the union of all elements of 5. We cannot define a function union so
that union[S] equals [J S for all sets S. The domain of union would have
to be a set that contains all sets, and there is no such set. (If there were,
we could express Russell’s paradox.) The symbol |J by itself is not a term,
so it does not denote a value. We cannot quantify over operators. The
string 3U : R € U(R) is not syntactically well formed, since we can write
R € U(R) only if the signature of U is term — term, and bound variables
are terms.

2.4 Examples

ZFM is easy to use in practice. As an example of something that can pose
difficulties for a typed system but is trivial in ZFM, let us define len(s) to
be the length of s, for any finite sequence s. Formally, a sequence s1,...,s,
is a function s whose domain is the set {1,...,n} such that s[i] = s;, for
1 < i < n. It is impossible to define len to be a function, since its domain
would have to be a set consisting of all finite sequences, and there is no such
set in ZFM. But, the operator len is easily defined by

len(s) = choosen : (n € N)A(doms={i €N :1<i<n})

This defines len(s) for all s, even if s is not a sequence. In that case, dom s
is not a set of the form {1,..., n} for any n in N, and the value of len(s) is
some unspecified value.

As a further example of how easily mathematics can be formalized with
ZFM, Figure 3 defines the Riemann integral of elementary calculus. The

5More precisely, a function is an operator of signature term, so it has no (operator)
arguments.

®Ye € S: P(¢) and o € S : P(z) are abbreviations for Ve : (¢ € S) = P(z) and
dz:(z € S) A P(z), respectively.

)

D
[N
—~

N
=

U{[{ieN:1<i<n}—S5]:neN}

Z:: f = if n<m then 0 else f[n]—l—nilf
Rt 2 {reR:0<r}
| 7] = if r <0then —r else r
P(8) = {peseq(R): (p[l]=a) A (pllen(p)]=b)
AYied{l...len(p)—1} :
([pli+1] = pli] < 9)
A if a < b then p[i] < p[i+1]
lse pli] > pli+1] }
len(p)—1
Sp(f) = 2 e N = (pli+1]=plil) - (TPl]+ fLpli+1]]) /2]
fabf £ choose r :
(reR) A (Vec Rt : 35 RT 1 VpePl(6):
[=S, (f)[<€)

Figure 3: The definition of the Riemann integral.

definition uses the operators of Figures 1 and 2, the set R of real numbers,
the subset IN of naturals, the usual arithmetic operations and ordering re-
lations on numbers, and the operator len. The integral fff is defined to
be the limit of trapezoidal approximations S, (f) determined by partitions
p of the interval [a, b], as the diameter (maximum subinterval length) of p
goes to zero. Figure 3 makes the following preliminary definitions: seq(.5)

n
is the set of sequences of elements of the set 5; > f, an abbreviation for

m
S>(m, f)[n], equals f[m] + f[m + 1]+ -- -+ f[n]; RT is the set of positive
reals; || is the absolute value of r; and P°(§) is the set of partitions of [a, b]
(sequences a = p[1], p[2], ..., b) of diameter less than §.

It is often best to define something axiomatically rather than construct-
ing it explicitly. The choose operator makes this easy. For example, to
define the natural numbers N with successor function succ and zero ele-
ment 0, we first define Peano(N, s, z) to be the formula asserting that the
set N with successor function s and zero element z satisfies Peano’s axioms.”

TWith first-order logic alone, one cannot rule out nonstandard models of the naturals.
This is seldom a problem in practice, since we are usually content to prove theorems that
are valid for any model satisfying Peano’s axioms.

We then define

N = (chooseV : Peano(V[1], W[2], ¥[3])) [1]
succ = (choose U : Peano(W[1], W[2], W[3])) [2]
0 = (choose W : Peano(W[1], ¥[2],¥[3]))[3]

“Higher-order” operators pose no problem. For example, consider the
operator I' defined by

L(F)(z,y) 2 Fla)=y

It has signature (term — term) — (term x term — formula). If G has
signature term — term, then I'(G) has signature term x term — formula,
and I'(G)(e, f) equals the formula G(e) = f, for any terms e and f. We
are still in the domain of first-order logic, because we can quantify only over
terms, not over arbitrary operators.

2.5 What is 1/0?

Elementary school children and programmers are taught that 1/0 is mean-
ingless, and they are committing an error by even writing it. More sophisti-
cated logicians say that 1/0 equals the nonvalue L, which acts like a virus,
turning infected expressions to 1. They devise complicated rules to describe
how it spreads—for example, declaring that (0 = 1) vV (0 = L) equals L,
but (0 = 1) A (0 = L) equals false. ZF'M provides a simpler answer to the
question of what 1/0 is: we don’t know and we don’t care.

Let us take / to be a function with domain R x (R\{0}), the set of
pairs (r, s) of real numbers with s nonzero. Then 1/0 is an abbreviation for
/1(1,0)]. Since (1,0) is not in the domain of /, we know nothing about the
value of 1/0; it might equal /2, it might equal R, or it might equal anything
else. We don’t care what it equals. For example, consider

(z e R)A (2 #0) = (¢-(1/2) = 1) (1)

This formula is valid, meaning that it is satisfied by all values of z. Sub-
stituting 0 for z yields the formula false = (0-(1/0) = 1), which equals
true regardless of the value of 1/0, and regardless of whether or not 0-(1/0)
equals 1. The subformula z - (1/2) = 1 of (1) may or may not be valid; we
don’t know what 0-(1/0) or R - (1/R) equal, so we don’t know whether or
not they equal 1.

2.6 Semantic Types

We can define what it means for a ZFM formula to be semantically type
correct. For each operator F', we must define an operator Tz that is true if
the arguments of F' are “sensible”. For example, Ta,,1,(f, 2) equals true iff
f is a function with z in its domain, in which case we say that the pair f, z
is in the semantic type of Apply. A formula is semantically type correct iff
its validity does not depend on the value of any operator applied to values
not in its semantic type. Formula (1) is semantically type correct, but its
subformula z - (1/2) = 1 is not.

Theorems should be semantically type correct, but arbitrary formulas
that appear within them need not be. If we know nothing about a value,
then we can’t prove a theorem whose validity depends on that value. Thus,
proving a theorem shows that it is semantically type correct. ZFM has
rules for proving theorems; there is no need to introduce semantic types and
semantic type checking.

3 Types

There is no consensus on what constitutes a type. Although everyone agrees
that the prime natural numbers form a set, computer scientists disagree on
whether they should form a type. There are many different type systems;
they differ in what kinds of types can be declared and what those type
declarations mean. However, most type systems share some features, which
I now describe.

Type systems allow some sets as types. Although one might consider
ZFM to be a typed logic with only two basic types, term and formula, we
expect a type system to include such types as NAT (natural numbers) and
REAL (real numbers). Type systems can be classified according to how rich
a collection of sets can be expressed as types. A fine type system allows the
set R\{0} of nonzero reals to be type; a coarse one allows only “simpler”
sets like R as types.

Type systems generally replace the separate concepts of functions and
operators with the single concept of a typed function. For example, the cube-
root function N might have type REAL — REAL. Replacing an operator like
len with a typed function requires the concept of polymorphism, discussed
in Section 3.1.

Types are used for type checking. Typed formalisms prevent errors by
allowing one to write only formulas that are accepted by the type checker.

Other uses of types are discussed in Section 3.2.

3.1 Polymorphism

Advocates of type systems might claim that eliminating the distinction be-
tween functions and operators produces a simpler formalism. However, this
simplification would be of no interest if it were achieved by eliminating use-
ful operators like len. In most type systems, len is a polymorphic function,
often thought of as a collection of simple functions of type SEQ(7T) — NaT,
for certain types T. What those “certain types” T are depends on the type
system; the type of len itself may or may not be one of them. Just replacing
functions and operators with simple functions and polymorphic functions
does not constitute a simplification. Devising a type system in which there
is no essential difference between Y and len is a nontrivial task. Such a type
system is unlikely to be simpler than just distinguishing between functions
and operators.

A form of polymorphism that is often called overloading is used to
formalize some informal notation. For example, a mathematician might
write x for both the Cartesian product and the vector product on R?, so
z Xy €85 x T asserts that the vector product z X y is an element of the
Cartesian product S x T. This can be formalized by declaring x to be a
polymorphic function. In a typeless system, one could do the same thing by
defining the operator x as

axb 2 if a cR®then ... else ...

Both approaches seem complicated and potentially confusing. If a rigorous
treatment is required, it is probably best to use two different symbols and
write z X y € § x T.

In some formalisms, + is regarded as polymorphic because NAT and
REAL are disjoint types, with separate definitions of addition. In such a
formalism, the real number 2.0 does not equal the natural number 2. Most
mathematicians would regard this as bizarre, but some computer scientists
believe that the naturals should not be a subset of the reals. Typed for-
malisms usually permit either approach. However, with many type systems,
it is impossible first to define the naturals, and then to define the reals as
a superset. This is easy to do in ZFM by defining R axiomatically, with
N C R as one of the axioms.

3.2 Types as Abbreviations

The type declaration r : REAL often means that, within its scope, Vr is an
abbreviation for Vr € R. Such an abbreviation can be convenient, and one
could add a similar convention to ZFM. However, I have found that the small

€ R” is outweighed by the disadvantage of
8

advantage of eliminating the “

having to declare bound variables. Many potentially confusing expressions
can be ruled out by the syntactic restriction that the same variable cannot
appear free and bound in the same expression. Since variables may appear
implicitly through the use of previously defined operators, an easy way to
enforce this restriction is by requiring that free variables be declared and
bound variables be undeclared.

The type declaration r : REAL can serve as an assertion that, within
its scope, r is assumed to be an element of R. Such an assertion is often
used in proofs; it is easily expressed without types by writing “assume r €
R”. Moreover, one may want to introduce a variable r satisfying certain
properties and then prove r € R. Requiring a type declaration for r simply
to introduce it could make writing a formal proof difficult.

4 The Trouble with Types

Formal reasoning is especially important when proving properties of pro-
grams. The social process by which mathematicians check each others’
proofs does not exist in the realm of program verification, so formal rea-
soning is crucial for eliminating errors. I will therefore discuss the problems
introduced by types when reasoning about programs.

Formalisms for reasoning about programs usually provide some exten-
sion to conventional mathematics—for example, Hoare triples or weakest
precondition operators. For my examples, I assume the kind of formalism
typically used to reason about concurrency, in which an execution of a pro-
gram is represented by a sequence of states or events, and the formula OP
asserts that P is true throughout an execution. However, nothing I say is
peculiar to this formalism; types cause exactly the same problems in other
formalisms for reasoning about programs.

Consider the program of Figure 4. It uses Dijkstra’s do construct

dog; —+ s 0...0¢9, — s, o0d

8For example, {z € {z}: = ¢ 2}, in which the second & is not the same variable as the
other three &’s.

10

initially n =0; s = ¢
do true — n:=
I
n>0 — n:=n-1; s := Tail(s) od

n+1; s := Append(s,42)

Figure 4: A simple algorithm.

which is executed by repeatedly choosing an arbitrary ¢ such that g; is
true, and executing s;. The statement terminates when all the g; are false.
Tail and Append are the usual operations on sequences, and ¢ is the empty
sequence. The program of Figure 4 loops forever, nondeterministically ap-
pending and removing 42’s from the sequence s, while keeping n equal to
the length of s. The property I want to prove of this program is that it
never sets s to Tail(¢).

Figure 4 is meant to describe an abstract program, not a real one. The
symbols +, —, Append, and Tuail represent mathematical operations on nat-
ural numbers and sequences, not procedures for manipulating bits in a com-
puter. The program permits executions in which the value of n becomes
arbitrarily large; a real program would produce an error if n became too
large. We want to write and reason about abstract descriptions of pro-
grams, without having to introduce the complexity of a real programming
language.

In a logic based on ZFM, one can prove that the program satisfies the
property O(s € seq(N)), which asserts that the value of s is always a finite
sequence of natural numbers. Since Tail(¢) is unspecified, one cannot prove
that it is in seq(N). Thus, proving O(s € seq(N)) shows that s is never
set to Tail(¢). We prove this result by using induction to show that the
program satisfies O((s € seq(N)) A (n = len(s))). This is the same method
used to prove any property of the form OP, such as the partial correctness
property O(terminated = (@), which asserts that @ holds if and when the
program terminates.

Semantic type correctness of a program means that the value of each
variable is always an element of the appropriate set. It is a property of the
form O((zy € S1)A... Az, € 5,)). As the example indicates, proving such
a property can be hard. In fact, semantic type correctness is undecidable.

With a typed formalism, one must declare types for the variables n and
s and the “functions” 4, —, Append and 7Tail. The representation of the

11

program is then type checked. Different type systems will require different
type declarations, and will differ in the meanings of those declarations. In
almost all systems, one would declare n to be of type NAT and s to be of type
SEQ(NAT). Fine and coarse type systems would use different declarations
for Tail, which cause different kinds of problems.

4.1 Fine Type Systems

In a fine type system, Tail will be of type SEQz4(NAT) — SEQ(NAT), where
SEQz4(NAT) is the type of nonempty sequences of naturals. Type checking
the program means proving that the program satisfies O(s € seq(IN)). Type
correctness means semantic type correctness, and type checking requires
the same kind of proofs needed to prove other program properties, such as
partial correctness. Type checking is undecidable for a fine type system.

In a fine type system, there seems to be no logical justification for giv-
ing type declarations a different status than other correctness properties.
Still, if a type system did nothing more than introduce a redundant way of
expressing properties, it would be relatively harmless. However, fine type
systems introduce a worse problem.

In reasoning about programs, as in any kind of mathematics, complexity
is handled by combining simple results about small expressions to obtain
more difficult results about big expressions. We therefore want to write and
reason about parts of programs and then compose those parts. For example,
in proving semantic type correctness for the program of Figure 4, we prove
that executing the statement

n>0 — n:=n—-1;s := Tail(s) (2)

leaves the assertion (s € seq(N)) A (n = len(s)) true. However, if s is of
type SEQ(NAT) and Tail is of type SEQx4(NAT) — SEQ(NAT), then (2) is
not type correct. A logic based on a fine type system would not let us define
and reason about this statement.

One can solve the problem of handling statement (2) by introducing the
notion of dependent types and declaring the type of s to be all sequences of
naturals whose length equals n. However, the substatement s : = Tail(s) of
(2) still does not type check.

This example illustrates a fundamental problem with type systems that
try to capture semantic type correctness. Type systems type check defini-
tions. But, just as semantic correctness in ZFM holds only for complete

12

theorems, semantic correctness in a programming logic holds only for com-
plete programs. Type checking definitions can make it impossible in practice
to build up complicated theorems or programs by defining their components
separately.

4.2 Coarse Type Systems

In a coarse type system, Tail has type SEQ(NAT) — SEQ(NAT). With such
a system, there is no problem separately type checking statement (2) or its
substatements. However, we are left with the question of what it means for
Tail to have this type. There seem to be three possibilities: Tuail is a partial
function that is defined on a subset of seq(N), it really is a function from
seq(IN) to seq(N), or the declaration is a piece of syntax that doesn’t really
mean anything.

4.2.1 Partial Functions

If Tail is a partial function, and Tail(¢) is undefined, then what is the
meaning of a program that assigns Tail(¢) to s—for example, the program
obtained by changing the initial value of n to 1in Figure 47 Simply declaring
a program to be illegal if it might set s to Tail(¢) would leave us unable to
reason about substatement (2) by itself, since it would be illegal.

One possibility is that Tail(¢) is the infectious nonvalue L. In this case,
type checking does not guarantee semantic type correctness. We still have
to prove that the original program satisfies O(s € seq(IN)). However, as
noted earlier, we would have to do this in a more complicated formalism
than ZFM. For example, in some methods of coping with 1, the formula
a # b is not equivalent to —~(a = b).

Another possibility is that declaring s to be of type SEQ(NAT) means
that the program is guaranteed never to set s to Tail(¢). The type declara-
tion implies that substatement (2) really means

n>0ANs#¢ — n:=n-1;s := Tail(s) (3)

This possibility is unsatisfactory because it provides no way to distinguish
the incorrect program obtained from Figure 4 by initializing n to 1, and the
correct program obtained by then replacing statement (2) with (3).

13

4.2.2 Total Functions

If Tail is a function from seq(N) to seq(IN), then Tail(¢) is some sequence
of naturals. It might be defined to equal ¢, or it might be some unspecified
sequence of naturals. Semantic type correctness is trivially satisfied. This
is unsatisfactory because we want a program to be incorrect if it sets s to
Tail(¢). We don’t want to be able to prove reasonable properties about such
a program.

4.2.3 Pure Syntax

One can interpret the declaration that Tail has type SEQ(NAT) — SEQ(NAT)
to be just an informal comment meaning that Tail should be used only in
a context in which its argument and its result are both expected to be se-
quences of naturals. Type checking provides a sanity check for detecting
errors, but type declarations have no semantic significance. Type declara-
tions might also indicate implicit ranges of quantification and of index sets,
but these are just syntactic abbreviations.

Syntactic type checking is harmless. It is probably used unconsciously
by mathematicians. If s is supposed to be a sequence of naturals, a mathe-
matician notices that the expression s € N must be wrong because it doesn’t
type check. As observed above, there is no reason for mathematicians to for-
malize this kind of type checking because proving a theorem demonstrates
that the theorem is semantically type correct.

Syntactic type checking is redundant when proving theorems, but math-
ematics is not used only to prove theorems. A formal specification of a
program is a mathematical formula, and large specifications are often writ-
ten without proving anything about them. Type checking is a good way
to catch errors in these specifications, and a purely syntactic type system
seems like a good choice for a specification language. Its type checker would
never declare a specification to be illegal; it would just issue warnings about
formulas that it suspects to be incorrect. Since its type declarations have
no semantic content, a syntactic type system would be freed from many of
the constraints that hinder conventional type systems. In principle, it could
be better at detecting errors. Unfortunately, I know of no such type system.
Designing one seems to be a good topic for research.

14

5 Do Types Help?

The usual justification for types is that type checking catches errors. But,
is type checking better than other methods for catching those errors?

For programming languages, the answer seems to be yes. Types allow
the compiler to catch errors that are more difficult to find at run time, when
debugging the program. They also allow more efficient code to be generated.
Although types can be inconvenient—mainly by making it difficult or im-
possible to write some correct programs—it seems clear that the advantages
of types can outweigh their inconvenience.

For mathematics, the answer is not so clear. Type checking allows errors
to be caught when making definitions. But those errors should be caught
when writing a proof. Mathematicians who are so careless in writing proofs
that they miss the obvious errors found by type checking are unlikely to
detect the subtle errors that lead to incorrect theorems. Most computer
scientists believe that type checking helps because it catches errors sooner.
But, this belief does not seem to be based on any evidence. I have written
many rigorous proofs using an untyped formalism; a few of them were me-
chanically checked. I have never felt that a type checker could have saved
me any significant amount of effort—even if it had required me to do no
extra work.

Another justification for types is that type checking isolates the part of
theorem proving that can be done automatically. When reasoning in an
untyped logic, we must prove type correctness as part of a proof. To prove
anything about the expression m+n, we must first prove that it is a number.
This is what type checking proves. In general, when semantic types coincide
with coarse types, as they do for +, semantic type correctness can be proved
by the type checker.

This argument for type checking can be expressed as follows. A type
checker can deduce automatically that, if n and m have type NAT and + has
type NAT X NAT — NAT, then n+m has type NAT. A theorem prover needs
human interaction to deduce that, if n and m are elements of N and + is a
function from N x N to N, then n+ m is an element of N. The absurdity of
this argument is evident. Yet, it has become a self-fulfilling prophecy. Some
theorem provers based on a typed formalism will automatically type check
the expression m 4+ n, but will require a great deal of human effort to prove

(meN)A(neN)A(+€[NXN—=N])= (m+ne€N) (4)

This is a problem in the design of theorem provers. When the two are

15

equivalent, there is no reason why type checking should be any easier than
proving semantic type correctness. When the two are not equivalent, type
checking does not prove any useful mathematical result. If Tail(¢) need not
be a number, then certifying that the expression Tail(s)+ n is type correct
does not prove that it is a number.

It can be argued that type declarations provide needed guidance to a
theorem prover. There are many theorems a prover could conceivably try
to prove automatically; how can it tell that it should try to prove (4)7 This
suggests adding type declarations as hints to the theorem prover, with no
semantic content. It is another possible argument in favor of syntactic types.
However, it is not clear that theorem provers really need this help.

6 Conclusion

Types are very useful in programming languages. They are useful in math-
ematics too. Type declarations can help the reader understand a formula,
and type checking can catch errors. But types have their cost. The only
form of type system that seems to have no significant drawbacks is a purely
syntactic one in which type declarations are just comments, and type check-
ing serves only to ensure that the formulas appear to be consistent with
those comments. I know of no formal system that uses such a type system.

Computer scientists seem to have embraced types without giving them
much thought. There is a general feeling that everyone uses types, so they
must be good. But types are not harmless. Their benefits must be weighed
against the problems they introduce. For programming languages, there is
a great deal of evidence to demonstrate the benefits of types. 1 know of
no similar evidence for mathematical formalisms. Mathematicians reason
informally without using types, and their style of reasoning can easily be
formalized without types. Mathematics is not programming, and the use of
types in mathematics is not justified by the success of typed programming
languages. Typed formalisms may turn out to be good for mathematics, but
this has yet to be demonstrated.

Acknowledgements

Robert Boyer, Luca Cardelli, Peter Hancock, Peter Ladkin, Denis Roegel,
Fred Schneider, and Andrzej Trybulec suggested improvements to previous
versions.

16

References

[1] A. C. Leisenring. Mathematical Logic and Hilbert’s e-Symbol. Gordon
and Breach, New York, 1969.

[2] J. R. Shoenfield. The axioms of set theory. In Jon Barwise, editor,
Handbook of Mathematical Logic, chapter B1l, pages 317-344. North-
Holland, Amsterdam, 1977.

17

