
Types Are Not HarmlessLeslie Lamportlamport@src.dec.comTue 18 Jul 1995 [16:03]

Contents1 Introduction 12 Math Without Types 12.1 Logic : 22.2 Set Theory : 22.3 Functions : 42.4 Examples : 52.5 What is 1/0? : 72.6 Semantic Types : 83 Types 83.1 Polymorphism : 93.2 Types as Abbreviations : 104 The Trouble with Types 104.1 Fine Type Systems : 124.2 Coarse Type Systems : 134.2.1 Partial Functions : 134.2.2 Total Functions : 144.2.3 Pure Syntax : 145 Do Types Help? 156 Conclusion 16

1 IntroductionTypes have become ubiquitous in computer science. Because the advantagesof typed programming languages are so obvious, most computer scientistsassume that mathematics should be formalized with types. They seem un-aware of the harm that types in
ict on the simplicity and elegance of math-ematics. Some even feel that mathematics cannot be formalized withouttypes. I believe that types do more harm than good in a formal system formathematical reasoning. I do not expect many readers to agree with thisconclusion. But, I hope to demonstrate that types are neither harmless nornecessary, and that their use in mathematics needs to be justi�ed.It is quite easy to formalize mathematics using sets and operators. Sec-tion 2 describes a formalism that I call ZFM (ZF for Mathematics). Thissection will seem excruciatingly obvious to some readers, since ZFM is astraightforward formalization of everyday mathematics. However, I havefound that many computer scientists think that a typeless set theory mustharbor logical inconsistencies.Section 3 describes how the concepts of mathematics are expressed intyped formalisms, and Section 4 discusses some problems that types intro-duce. These problems arise in an of area of particular concern to computerscientists|formal reasoning about programs. I expect them to occur inmore conventional branches of mathematics as well.The problems raised by types are not insurmountable. Each problemthat I describe can be solved in most type systems. But, the solutions addcomplexity and make a formalism harder to use. The question I wish toraise is not how type systems can solve these problems, but whether thebene�ts types provide o�set the harm they do. Section 5 discusses whatthose bene�ts might be.2 Math Without TypesThere are a number of ways to formalize mathematics without using types.The formalism I call ZFM is the one I �nd to be the simplest and mostnatural way to capture ordinary mathematical reasoning. I describe it in-formally; the formal de�nition of ZFM should be a straightforward exercisefor a mathematician familiar with the foundations of logic and set theory.1

2.1 LogicZFM is based on �rst-order predicate logic with equality. Its formulas con-tain variables, quanti�ers, and operators. Each operator has a signature,de�ned in terms of the primitive signatures term and formula. For ex-ample, the equality operator (=) has signature term � term ! formula.Quanti�cation is only over variables, which have signature term.1ZFM also includes Hilbert's " operator [1], which I call choose. Theexpression choose x :P(x) denotes an arbitrary value x that satis�es P(x),if one exists; otherwise it denotes a completely arbitrary value. The chooseoperator satis�es the following axiom schemas () is implication and � isthe boolean operator \if and only if").` (9 x :P(x))) P(choose x :P(x))` (8 x :P(x) � Q(x))) (choose x :P(x)) = (choose x :Q(x))Mathematicians need to de�ne new operators in terms of the primitive onesprovided by a formalism. ZFM takes the simple view that de�nitions arepurely syntactic. For example, writing F (x) �= 9 y : G(x ; y) makes F (e)an abbreviation for 9 y : G(e; y), for any expression e. An operator canbe de�ned only in terms of primitive operators and operators that havealready been de�ned. (Recursion is discussed below.) Thus, by replacingde�ned symbols with their de�nitions, any expression can be reduced toone containing only the primitive operators of ZFM. A de�nition cannotintroduce unsoundness, so we never have to prove a theorem in order tomake a de�nition. However, we may have to prove that a de�ned operatorhas the properties we want.One useful operator is the if/then/else construct, which has signatureformula � term � term ! term. It is de�ned byif p then e1 else e2 �= choose x : (p ^ (x = e1))_ (:p ^ (x = e2))2.2 Set TheoryThe primitive operators of ZFM include the ones of Zermelo-Fraenkel settheory [2]. ZFM uses the simplest form of set theory, in which everything1Bound variables introduce complications. A simpler formalism can be obtained byeliminating them. For example, the formula 9 x : 9 y : P(x ;y) can be replaced by 9 (9 (Q)),where Q is the operator of sort term ! (term ! formula) such that Q(x)(y) equalsP(x ;y). Such a formalism is less convenient in practice, so ZFM uses bound variables.However, thinking of ZFM as based on an underlying formalism with no bound variablescan help clarify some subtle points, such as the meaning of substitution.2

= 6= 2 =2 ; [\ � n [set di�erence]fe1; : : : ; eng [Set consisting of elements ei]fx 2 S : P(x)g [Set of elements x in S satisfying P(x)]fe(x) : x 2 Sg [Set of elements e(x) such that x in S]2S [Set of subsets of S]SS [Union of all elements of S]he1; : : : ; eni [The n-tuple whose i th component is ei]S1 � : : :� Sn [The set of all n-tuples with i th component in S i]Figure 1: The operators of set theory.is a set. Thus, the number 2 is a set, though we usually don't think of itas one because we don't care what its elements are. The phrase \the set2" seems strange, so I let value be synonymous with set and refer to 2 as avalue.Figure 1 describes a collection of operators from set theory that I havefound adequate for ordinary mathematics. Some of these operators are de-�ned in terms of the others; the rest are primitive and are e�ectively de�nedby axioms. For example, the Separation Axiom [2, page 325] asserts that,for any set S , the collection fx 2 S : P(x)g of all elements of S satisfyingP(x) is a set.2 It makes no practical di�erence which of these operators aretaken to be primitive. (They can all be de�ned in terms of 2.)For most uses of ZFM, it su�ces to understand the meanings of the oper-ators of Figure 1, and to know that two sets are equal i� they have the sameelements. Formally, we need axioms to guarantee the existence of \enough"distinct sets. For computer science, it seems necessary only to assume anaxiom of in�nity that implies the existence of the natural numbers. Moresophisticated mathematical applications may need the Axiom of Choice [2,page 335].3Naive informal reasoning about sets can be unsound. In ZFM, soundnessis guaranteed by restricting how one can construct sets. First order logicwith the operators of Figure 1, and the corresponding axioms, is sound. Forexample, Russell's paradox is avoided because the \set" R of all sets thatare not elements of themselves, which satis�es R 2 R i� it satis�es R =2 R,cannot be expressed with the operators of Figure 1.2This axiom is valid only because S is considered to lie outside the scope of the boundvariable x . Similarly, S lies outside the scope of x in fe(x) : x 2 Sg.3The axioms for the choose operator are independent of the Axiom of Choice.3

2.3 FunctionsMathematicians usually de�ne a function to be a set of ordered pairs. For-mally, one can de�ne the operator Apply byApply(f ; x) �= choose y : hx ; y i 2 fand let f (x) be an abbreviation for Apply(f ; x). It doesn't matter howfunctions are de�ned. I prefer simply to regard the four operators of Figure 2as primitive, where I write f [x] instead of the customary f (x) to distinguishfunction application from operator application.4 A function f has a domain,which is the set written dom f . The set [S ! T] consists of all functions fsuch that dom f = S and f [x] 2 T for all x 2 S . The notation [x 2 S 7!e(x)] is used to describe a function explicitly. For example, if R is the setof real numbers, then [r 2 Rnf0g 7! 1=r] is the reciprocal function, whosedomain is the set Rnf0g of nonzero reals.Functions can be de�ned recursively using the choose operator. Forexample, the factorial function fact is de�ned byfact �= choose f : f = [n 2 N 7! if n = 0 then 1 else n � f [n�1]]where N is the set of natural numbers. I write this de�nition asfact [n :N] �= if n = 0 then 1 else n � fact [n�1]In general, f [x : S] �= e(x) de�nes f to equal choose f : f = [x 2 S 7! e(x)].To deduce that f is a function with domain S , we must prove that thereexists a function f that equals [x 2 S 7! e(x)]. This is the same proofthat is often cited as a requirement for the de�nition to be legal. In ZFM,de�nitions are always legal; proofs are needed only to deduce properties ofthe de�niendum.4One could use f (x) for both, since the signature of f determines which is meant.f [e] [Function application]dom f [Domain of the function f][S ! T] [Set of functions with domain S and range a subset of T][x 2 S 7! e(x)] [Function f such that f [x] = e(x) for x 2 S]Figure 2: Operators for expressing functions4

Functions are di�erent from operators.5 A function f has a domain,and we can de�ne the value of f [x] only for elements x in its domain. Theexpression fact [p2], which is an abbreviation for Apply(fact ;p2), is syntac-tically a term, so it denotes a value. However, we don't know what value.It need not equal p2 � fact [p2 � 1]. It need not even be a number. But,whatever its value, it must equal fact [2=p2], since p2 equals 2=p2. Func-tions are just like other values; for example, fact by itself is syntactically aterm. We can quantify over sets of functions, writing expressions such as8f 2 [R! R] : jf j1 � 0.6Operators are di�erent from functions. Consider the operator S, whereSS is the union of all elements of S . We cannot de�ne a function union sothat union[S] equals S S for all sets S . The domain of union would haveto be a set that contains all sets, and there is no such set. (If there were,we could express Russell's paradox.) The symbol S by itself is not a term,so it does not denote a value. We cannot quantify over operators. Thestring 9U :R 2 U (R) is not syntactically well formed, since we can writeR 2 U (R) only if the signature of U is term ! term, and bound variablesare terms.2.4 ExamplesZFM is easy to use in practice. As an example of something that can posedi�culties for a typed system but is trivial in ZFM, let us de�ne len(s) tobe the length of s , for any �nite sequence s . Formally, a sequence s1; : : : ; snis a function s whose domain is the set f1; : : : ; ng such that s [i] = s i , for1 � i � n. It is impossible to de�ne len to be a function, since its domainwould have to be a set consisting of all �nite sequences, and there is no suchset in ZFM. But, the operator len is easily de�ned bylen(s) �= choose n : (n 2 N) ^ (dom s = fi 2 N : 1 � i � ng)This de�nes len(s) for all s , even if s is not a sequence. In that case, dom sis not a set of the form f1; : : : ; ng for any n in N, and the value of len(s) issome unspeci�ed value.As a further example of how easily mathematics can be formalized withZFM, Figure 3 de�nes the Riemann integral of elementary calculus. The5More precisely, a function is an operator of signature term, so it has no (operator)arguments.68x 2 S : P(x) and 9x 2 S : P(x) are abbreviations for 8x : (x 2 S)) P(x) and9x : (x 2 S) ^ P(x), respectively. 5

seq(S) �= S f [fi 2 N : 1 � i � ng ! S] : n 2 Ngn : NPm f �= if n < m then 0 else f [n] + n�1Pm fR+ �= fr 2 R : 0 < rgjr j �= if r < 0 then � r else rPba(�) �= f p 2 seq(R) : (p[1] = a) ^ (p[len(p)] = b)^ 8 i 2 f1 : : : len(p)�1g :(jp[i+1]� p[i]j < �)^ if a � b then p[i] � p[i+1]else p[i] � p[i+1] gSp(f) �= len(p)�1P1 [i 2 N 7! (p[i+1]� p[i]) � (f [p[i]]+ f [p[i+1]]) = 2]R ba f �= choose r :(r 2 R) ^ (8 � 2 R+ : 9 � 2 R+ : 8 p 2 Pba(�) :j r � Sp(f) j < �)Figure 3: The de�nition of the Riemann integral.de�nition uses the operators of Figures 1 and 2, the set R of real numbers,the subset N of naturals, the usual arithmetic operations and ordering re-lations on numbers, and the operator len. The integral R ba f is de�ned tobe the limit of trapezoidal approximations Sp(f) determined by partitionsp of the interval [a; b], as the diameter (maximum subinterval length) of pgoes to zero. Figure 3 makes the following preliminary de�nitions: seq(S)is the set of sequences of elements of the set S ; nPm f , an abbreviation forP(m; f)[n], equals f [m] + f [m + 1] + � � �+ f [n]; R+ is the set of positivereals; jr j is the absolute value of r ; and Pba(�) is the set of partitions of [a; b](sequences a = p[1], p[2], . . . , b) of diameter less than �.It is often best to de�ne something axiomatically rather than construct-ing it explicitly. The choose operator makes this easy. For example, tode�ne the natural numbers N with successor function succ and zero ele-ment 0, we �rst de�ne Peano(N ; s ; z) to be the formula asserting that theset N with successor function s and zero element z satis�es Peano's axioms.77With �rst-order logic alone, one cannot rule out nonstandard models of the naturals.This is seldom a problem in practice, since we are usually content to prove theorems thatare valid for any model satisfying Peano's axioms.6

We then de�neN �= (choose 	 : Peano([1];	[2];	[3])) [1]succ �= (choose 	 : Peano([1];	[2];	[3])) [2]0 �= (choose 	 : Peano([1];	[2];	[3])) [3]\Higher-order" operators pose no problem. For example, consider theoperator � de�ned by �(F)(x ; y) �= F (x) = yIt has signature (term ! term) ! (term � term ! formula). If G hassignature term ! term, then �(G) has signature term � term ! formula,and �(G)(e; f) equals the formula G(e) = f , for any terms e and f . Weare still in the domain of �rst-order logic, because we can quantify only overterms, not over arbitrary operators.2.5 What is 1/0?Elementary school children and programmers are taught that 1/0 is mean-ingless, and they are committing an error by even writing it. More sophisti-cated logicians say that 1/0 equals the nonvalue ?, which acts like a virus,turning infected expressions to ?. They devise complicated rules to describehow it spreads|for example, declaring that (0 = 1) _ (0 = ?) equals ?,but (0 = 1) ^ (0 = ?) equals false. ZFM provides a simpler answer to thequestion of what 1/0 is: we don't know and we don't care.Let us take = to be a function with domain R � (Rnf0g), the set ofpairs hr ; s i of real numbers with s nonzero. Then 1=0 is an abbreviation for=[h1; 0i]. Since h1; 0i is not in the domain of =, we know nothing about thevalue of 1=0; it might equal p2, it might equal R, or it might equal anythingelse. We don't care what it equals. For example, consider(x 2 R) ^ (x 6= 0)) (x � (1=x) = 1) (1)This formula is valid, meaning that it is satis�ed by all values of x . Sub-stituting 0 for x yields the formula false) (0 � (1=0) = 1), which equalstrue regardless of the value of 1=0, and regardless of whether or not 0 �(1=0)equals 1. The subformula x � (1=x) = 1 of (1) may or may not be valid; wedon't know what 0 � (1=0) or R � (1=R) equal, so we don't know whether ornot they equal 1. 7

2.6 Semantic TypesWe can de�ne what it means for a ZFM formula to be semantically typecorrect. For each operator F , we must de�ne an operator TF that is true ifthe arguments of F are \sensible". For example, TApply(f; x) equals true i�f is a function with x in its domain, in which case we say that the pair f , xis in the semantic type of Apply . A formula is semantically type correct i�its validity does not depend on the value of any operator applied to valuesnot in its semantic type. Formula (1) is semantically type correct, but itssubformula x � (1=x) = 1 is not.Theorems should be semantically type correct, but arbitrary formulasthat appear within them need not be. If we know nothing about a value,then we can't prove a theorem whose validity depends on that value. Thus,proving a theorem shows that it is semantically type correct. ZFM hasrules for proving theorems; there is no need to introduce semantic types andsemantic type checking.3 TypesThere is no consensus on what constitutes a type. Although everyone agreesthat the prime natural numbers form a set, computer scientists disagree onwhether they should form a type. There are many di�erent type systems;they di�er in what kinds of types can be declared and what those typedeclarations mean. However, most type systems share some features, whichI now describe.Type systems allow some sets as types. Although one might considerZFM to be a typed logic with only two basic types, term and formula, weexpect a type system to include such types as Nat (natural numbers) andReal (real numbers). Type systems can be classi�ed according to how richa collection of sets can be expressed as types. A �ne type system allows theset Rnf0g of nonzero reals to be type; a coarse one allows only \simpler"sets like R as types.Type systems generally replace the separate concepts of functions andoperators with the single concept of a typed function. For example, the cube-root function 3p might have type Real ! Real. Replacing an operator likelen with a typed function requires the concept of polymorphism, discussedin Section 3.1.Types are used for type checking. Typed formalisms prevent errors byallowing one to write only formulas that are accepted by the type checker.8

Other uses of types are discussed in Section 3.2.3.1 PolymorphismAdvocates of type systems might claim that eliminating the distinction be-tween functions and operators produces a simpler formalism. However, thissimpli�cation would be of no interest if it were achieved by eliminating use-ful operators like len. In most type systems, len is a polymorphic function,often thought of as a collection of simple functions of type Seq(T)! Nat,for certain types T . What those \certain types" T are depends on the typesystem; the type of len itself may or may not be one of them. Just replacingfunctions and operators with simple functions and polymorphic functionsdoes not constitute a simpli�cation. Devising a type system in which thereis no essential di�erence between 3p and len is a nontrivial task. Such a typesystem is unlikely to be simpler than just distinguishing between functionsand operators.A form of polymorphism that is often called overloading is used toformalize some informal notation. For example, a mathematician mightwrite � for both the Cartesian product and the vector product on R3, sox � y 2 S � T asserts that the vector product x � y is an element of theCartesian product S � T . This can be formalized by declaring � to be apolymorphic function. In a typeless system, one could do the same thing byde�ning the operator � asa � b �= if a 2 R3 then : : : else : : :Both approaches seem complicated and potentially confusing. If a rigoroustreatment is required, it is probably best to use two di�erent symbols andwrite x � y 2 S � T .In some formalisms, + is regarded as polymorphic because Nat andReal are disjoint types, with separate de�nitions of addition. In such aformalism, the real number 2:0 does not equal the natural number 2. Mostmathematicians would regard this as bizarre, but some computer scientistsbelieve that the naturals should not be a subset of the reals. Typed for-malisms usually permit either approach. However, with many type systems,it is impossible �rst to de�ne the naturals, and then to de�ne the reals asa superset. This is easy to do in ZFM by de�ning R axiomatically, withN � R as one of the axioms. 9

3.2 Types as AbbreviationsThe type declaration r :Real often means that, within its scope, 8r is anabbreviation for 8r 2 R. Such an abbreviation can be convenient, and onecould add a similar convention to ZFM. However, I have found that the smalladvantage of eliminating the \2 R" is outweighed by the disadvantage ofhaving to declare bound variables. Many potentially confusing expressions8can be ruled out by the syntactic restriction that the same variable cannotappear free and bound in the same expression. Since variables may appearimplicitly through the use of previously de�ned operators, an easy way toenforce this restriction is by requiring that free variables be declared andbound variables be undeclared.The type declaration r : Real can serve as an assertion that, withinits scope, r is assumed to be an element of R. Such an assertion is oftenused in proofs; it is easily expressed without types by writing \assume r 2R". Moreover, one may want to introduce a variable r satisfying certainproperties and then prove r 2 R. Requiring a type declaration for r simplyto introduce it could make writing a formal proof di�cult.4 The Trouble with TypesFormal reasoning is especially important when proving properties of pro-grams. The social process by which mathematicians check each others'proofs does not exist in the realm of program veri�cation, so formal rea-soning is crucial for eliminating errors. I will therefore discuss the problemsintroduced by types when reasoning about programs.Formalisms for reasoning about programs usually provide some exten-sion to conventional mathematics|for example, Hoare triples or weakestprecondition operators. For my examples, I assume the kind of formalismtypically used to reason about concurrency, in which an execution of a pro-gram is represented by a sequence of states or events, and the formula 2Passerts that P is true throughout an execution. However, nothing I say ispeculiar to this formalism; types cause exactly the same problems in otherformalisms for reasoning about programs.Consider the program of Figure 4. It uses Dijkstra's do constructdo g1 ! s1 : : : gn ! sn od8For example, fx 2 fxg : x =2 xg, in which the second x is not the same variable as theother three x 's. 10

initially n = 0; s = �do true ! n : = n + 1; s : = Append(s ; 42)n > 0 ! n : = n � 1; s : = Tail(s) odFigure 4: A simple algorithm.which is executed by repeatedly choosing an arbitrary i such that g i istrue, and executing s i . The statement terminates when all the g i are false.Tail and Append are the usual operations on sequences, and � is the emptysequence. The program of Figure 4 loops forever, nondeterministically ap-pending and removing 42's from the sequence s , while keeping n equal tothe length of s . The property I want to prove of this program is that itnever sets s to Tail(�).Figure 4 is meant to describe an abstract program, not a real one. Thesymbols +, �, Append , and Tail represent mathematical operations on nat-ural numbers and sequences, not procedures for manipulating bits in a com-puter. The program permits executions in which the value of n becomesarbitrarily large; a real program would produce an error if n became toolarge. We want to write and reason about abstract descriptions of pro-grams, without having to introduce the complexity of a real programminglanguage.In a logic based on ZFM, one can prove that the program satis�es theproperty 2(s 2 seq(N)), which asserts that the value of s is always a �nitesequence of natural numbers. Since Tail(�) is unspeci�ed, one cannot provethat it is in seq(N). Thus, proving 2(s 2 seq(N)) shows that s is neverset to Tail(�). We prove this result by using induction to show that theprogram satis�es 2((s 2 seq(N))^ (n = len(s))). This is the same methodused to prove any property of the form 2P , such as the partial correctnessproperty 2(terminated) Q), which asserts that Q holds if and when theprogram terminates.Semantic type correctness of a program means that the value of eachvariable is always an element of the appropriate set. It is a property of theform 2((x1 2 S1)^ : : :^(xn 2 Sn)). As the example indicates, proving sucha property can be hard. In fact, semantic type correctness is undecidable.With a typed formalism, one must declare types for the variables n ands and the \functions" +, �, Append and Tail . The representation of the11

program is then type checked. Di�erent type systems will require di�erenttype declarations, and will di�er in the meanings of those declarations. Inalmost all systems, one would declare n to be of typeNat and s to be of typeSeq(Nat). Fine and coarse type systems would use di�erent declarationsfor Tail , which cause di�erent kinds of problems.4.1 Fine Type SystemsIn a �ne type system, Tail will be of type Seq6=�(Nat)! Seq(Nat), whereSeq6=�(Nat) is the type of nonempty sequences of naturals. Type checkingthe program means proving that the program satis�es 2(s 2 seq(N)). Typecorrectness means semantic type correctness, and type checking requiresthe same kind of proofs needed to prove other program properties, such aspartial correctness. Type checking is undecidable for a �ne type system.In a �ne type system, there seems to be no logical justi�cation for giv-ing type declarations a di�erent status than other correctness properties.Still, if a type system did nothing more than introduce a redundant way ofexpressing properties, it would be relatively harmless. However, �ne typesystems introduce a worse problem.In reasoning about programs, as in any kind of mathematics, complexityis handled by combining simple results about small expressions to obtainmore di�cult results about big expressions. We therefore want to write andreason about parts of programs and then compose those parts. For example,in proving semantic type correctness for the program of Figure 4, we provethat executing the statementn > 0 ! n : = n � 1; s : = Tail(s) (2)leaves the assertion (s 2 seq(N)) ^ (n = len(s)) true. However, if s is oftype Seq(Nat) and Tail is of type Seq6=�(Nat) ! Seq(Nat), then (2) isnot type correct. A logic based on a �ne type system would not let us de�neand reason about this statement.One can solve the problem of handling statement (2) by introducing thenotion of dependent types and declaring the type of s to be all sequences ofnaturals whose length equals n. However, the substatement s : = Tail(s) of(2) still does not type check.This example illustrates a fundamental problem with type systems thattry to capture semantic type correctness. Type systems type check de�ni-tions. But, just as semantic correctness in ZFM holds only for complete12

theorems, semantic correctness in a programming logic holds only for com-plete programs. Type checking de�nitions can make it impossible in practiceto build up complicated theorems or programs by de�ning their componentsseparately.4.2 Coarse Type SystemsIn a coarse type system, Tail has type Seq(Nat)! Seq(Nat). With sucha system, there is no problem separately type checking statement (2) or itssubstatements. However, we are left with the question of what it means forTail to have this type. There seem to be three possibilities: Tail is a partialfunction that is de�ned on a subset of seq(N), it really is a function fromseq(N) to seq(N), or the declaration is a piece of syntax that doesn't reallymean anything.4.2.1 Partial FunctionsIf Tail is a partial function, and Tail(�) is unde�ned, then what is themeaning of a program that assigns Tail(�) to s|for example, the programobtained by changing the initial value of n to 1 in Figure 4? Simply declaringa program to be illegal if it might set s to Tail(�) would leave us unable toreason about substatement (2) by itself, since it would be illegal.One possibility is that Tail(�) is the infectious nonvalue ?. In this case,type checking does not guarantee semantic type correctness. We still haveto prove that the original program satis�es 2(s 2 seq(N)). However, asnoted earlier, we would have to do this in a more complicated formalismthan ZFM. For example, in some methods of coping with ?, the formulaa 6= b is not equivalent to :(a = b).Another possibility is that declaring s to be of type Seq(Nat) meansthat the program is guaranteed never to set s to Tail(�). The type declara-tion implies that substatement (2) really meansn > 0 ^ s 6= � ! n : = n � 1; s : = Tail(s) (3)This possibility is unsatisfactory because it provides no way to distinguishthe incorrect program obtained from Figure 4 by initializing n to 1, and thecorrect program obtained by then replacing statement (2) with (3).13

4.2.2 Total FunctionsIf Tail is a function from seq(N) to seq(N), then Tail(�) is some sequenceof naturals. It might be de�ned to equal �, or it might be some unspeci�edsequence of naturals. Semantic type correctness is trivially satis�ed. Thisis unsatisfactory because we want a program to be incorrect if it sets s toTail(�). We don't want to be able to prove reasonable properties about sucha program.4.2.3 Pure SyntaxOne can interpret the declaration thatTail has type Seq(Nat)! Seq(Nat)to be just an informal comment meaning that Tail should be used only ina context in which its argument and its result are both expected to be se-quences of naturals. Type checking provides a sanity check for detectingerrors, but type declarations have no semantic signi�cance. Type declara-tions might also indicate implicit ranges of quanti�cation and of index sets,but these are just syntactic abbreviations.Syntactic type checking is harmless. It is probably used unconsciouslyby mathematicians. If s is supposed to be a sequence of naturals, a mathe-matician notices that the expression s 2 Nmust be wrong because it doesn'ttype check. As observed above, there is no reason for mathematicians to for-malize this kind of type checking because proving a theorem demonstratesthat the theorem is semantically type correct.Syntactic type checking is redundant when proving theorems, but math-ematics is not used only to prove theorems. A formal speci�cation of aprogram is a mathematical formula, and large speci�cations are often writ-ten without proving anything about them. Type checking is a good wayto catch errors in these speci�cations, and a purely syntactic type systemseems like a good choice for a speci�cation language. Its type checker wouldnever declare a speci�cation to be illegal; it would just issue warnings aboutformulas that it suspects to be incorrect. Since its type declarations haveno semantic content, a syntactic type system would be freed from many ofthe constraints that hinder conventional type systems. In principle, it couldbe better at detecting errors. Unfortunately, I know of no such type system.Designing one seems to be a good topic for research.14

5 Do Types Help?The usual justi�cation for types is that type checking catches errors. But,is type checking better than other methods for catching those errors?For programming languages, the answer seems to be yes. Types allowthe compiler to catch errors that are more di�cult to �nd at run time, whendebugging the program. They also allow more e�cient code to be generated.Although types can be inconvenient|mainly by making it di�cult or im-possible to write some correct programs|it seems clear that the advantagesof types can outweigh their inconvenience.For mathematics, the answer is not so clear. Type checking allows errorsto be caught when making de�nitions. But those errors should be caughtwhen writing a proof. Mathematicians who are so careless in writing proofsthat they miss the obvious errors found by type checking are unlikely todetect the subtle errors that lead to incorrect theorems. Most computerscientists believe that type checking helps because it catches errors sooner.But, this belief does not seem to be based on any evidence. I have writtenmany rigorous proofs using an untyped formalism; a few of them were me-chanically checked. I have never felt that a type checker could have savedme any signi�cant amount of e�ort|even if it had required me to do noextra work.Another justi�cation for types is that type checking isolates the part oftheorem proving that can be done automatically. When reasoning in anuntyped logic, we must prove type correctness as part of a proof. To proveanything about the expression m+n, we must �rst prove that it is a number.This is what type checking proves. In general, when semantic types coincidewith coarse types, as they do for +, semantic type correctness can be provedby the type checker.This argument for type checking can be expressed as follows. A typechecker can deduce automatically that, if n and m have type Nat and + hastype Nat�Nat! Nat, then n+m has type Nat. A theorem prover needshuman interaction to deduce that, if n and m are elements of N and + is afunction fromN�N toN, then n+m is an element of N. The absurdity ofthis argument is evident. Yet, it has become a self-ful�lling prophecy. Sometheorem provers based on a typed formalism will automatically type checkthe expression m + n, but will require a great deal of human e�ort to prove(m 2 N) ^ (n 2 N) ^ (+ 2 [N�N! N])) (m + n 2 N) (4)This is a problem in the design of theorem provers. When the two are15

equivalent, there is no reason why type checking should be any easier thanproving semantic type correctness. When the two are not equivalent, typechecking does not prove any useful mathematical result. If Tail(�) need notbe a number, then certifying that the expression Tail(s)+ n is type correctdoes not prove that it is a number.It can be argued that type declarations provide needed guidance to atheorem prover. There are many theorems a prover could conceivably tryto prove automatically; how can it tell that it should try to prove (4)? Thissuggests adding type declarations as hints to the theorem prover, with nosemantic content. It is another possible argument in favor of syntactic types.However, it is not clear that theorem provers really need this help.6 ConclusionTypes are very useful in programming languages. They are useful in math-ematics too. Type declarations can help the reader understand a formula,and type checking can catch errors. But types have their cost. The onlyform of type system that seems to have no signi�cant drawbacks is a purelysyntactic one in which type declarations are just comments, and type check-ing serves only to ensure that the formulas appear to be consistent withthose comments. I know of no formal system that uses such a type system.Computer scientists seem to have embraced types without giving themmuch thought. There is a general feeling that everyone uses types, so theymust be good. But types are not harmless. Their bene�ts must be weighedagainst the problems they introduce. For programming languages, there isa great deal of evidence to demonstrate the bene�ts of types. I know ofno similar evidence for mathematical formalisms. Mathematicians reasoninformally without using types, and their style of reasoning can easily beformalized without types. Mathematics is not programming, and the use oftypes in mathematics is not justi�ed by the success of typed programminglanguages. Typed formalisms may turn out to be good for mathematics, butthis has yet to be demonstrated.AcknowledgementsRobert Boyer, Luca Cardelli, Peter Hancock, Peter Ladkin, Denis Roegel,Fred Schneider, and Andrzej Trybulec suggested improvements to previousversions. 16

References[1] A. C. Leisenring. Mathematical Logic and Hilbert's "-Symbol. Gordonand Breach, New York, 1969.[2] J. R. Shoen�eld. The axioms of set theory. In Jon Barwise, editor,Handbook of Mathematical Logic, chapter B1, pages 317{344. North-Holland, Amsterdam, 1977.

17

