
module TicTacToe
A specification of Tic-Tac-Toe in the Behavioral Programming style, after Harel et al., CACM

2012, http://www.wisdom.weizmann.ac.il/~harel/papers/Behavioral%20programming%20.pdf

The idea of Behavioral Programming is that specifications be constructed iteratively and inter-
actively, by gradually adding rules, each specifying a “b-thread” (which corresponds to a TLA+

formula, not a TLA+ behavior), and allowing verification at each stage. The rules below do
not follow precisely those of Harel, but they follow them in spirit; the variables and definitions
below are therefore introduced as needed. The properties defined after each rule can be verified
in the model checker before the following rules are defined, thus forming an incremental style of
specification.

The goal of this specification is to examine the viability of specifying in the bahvioral programming
style in TLA+.

Historical note

In the 1830s (probably, he does not provide a date), having become convinced that ”every game
of skill is susceptible of being played by an automaton,” and after contemplating chess and finding
it too taxing, Charles Babbage decided to build a machine that would play Tic-Tac-Toe (”the
simplest game with which I am acquainted”) against itself, ”surrounded with such attractive
circumstances that a very popular and profitable exhibition might be produced” that would raise
money to fund his Analytical Engine, which would have been, had it been built, the first general
purpose computer. Not only was the first computer able to play the game over one hundred
years away, Babbage would not have been able to write a formal specification similar to the one
below. George Boole’s algebra would be invented only some years later, based on Babbage’s (and
George Peacock’s) pioneering work in abstract algebra, and formal logic as we know was forty or
fifty years away. Babbage would not have been pleased with the following specification, which
would have made the attractive animatronic effects he had planned redundant, as the play tactics
always lead to a draw.

(see Charles Babbage, Passages from the Life of a Philosopher, 1864)

Conclusions

Rules 1-3, which specify the rules of the game, feel a bit contrived specified in the behavioral
way, however, specifying them in this way felt quite easy, allowing to focus on one concept at a
time. Rules 4-7, containing the play tactics, are a natural fit for the behavioral style, but in this
particular specification, because they have no state or temporal features of their own, would have
been just as easily composed in the ordinary specification style. However, one can easily imagine
temporal rules, which may benefit from the behavioral style. While the result is not conclusive,
I think the style deserves further consideration. Some changes to TLC (based on the comments
inline, especially with regards to creating the conjoined specification can make the experience
more pleasant, by allowing a more elegant, less tedious way of enabling and disabling some of the
rules to examine their effect.

extends Naturals, FiniteSets

1



1. Board: At each step, an X or an O is marked on the board

variable board , pretty board
v1

∆
= 〈board , pretty board〉

N
∆
= 3

Empty
∆
= “-”

Player
∆
= {“X”, “O”}

Mark
∆
= Player

Square
∆
= {Empty} ∪Mark

BoardType
∆
= ∧ board ∈ [(1 . . N )× (1 . . N )→ Square] This is more convenient

∧ pretty board ∈ [1 . . N → [1 . . N → Square]] Displayed more nicely in TLC output

Pretty(b)
∆
= [x ∈ 1 . . N 7→ [y ∈ 1 . . N 7→ b[x , y ]]]

BoardFull
∆
= ∀ i , j ∈ 1 . . N : board [i , j ] 6= Empty

Init1
∆
= ∧ board = [i , j ∈ 1 . . N 7→ Empty ]
∧ pretty board = Pretty(board)

Next1
∆
= ∧ ∃ i , j ∈ 1 . . N , mark ∈ Mark : ∧ board [i , j ] = Empty

∧ board ′ = [board except ! [i , j ] = mark ]
∧ pretty board ′ = Pretty(board ′)

Board
∆
= Init1 ∧2[Next1]v1

TicTacToe1
∆
= Board

Properties we can state at this point:

theorem TicTacToe1⇒ 2BoardType

OnceSetAlwaysSet
∆
=

∀ i , j ∈ 1 . . N : 2(∃mark ∈ Mark : board [i , j ] = mark ⇒ 2(board [i , j ] = mark))
theorem TicTacToe1⇒ OnceSetAlwaysSet

2



2. EnforceTurns: X and O play in alternating turns

variable current ,
turn Necessary for some properties we may wish to state

v2
∆
= 〈v1, turn, current〉

Other(player)
∆
= if player = “X” then “O” else “X”

Opponent
∆
= Other(current)

TurnType
∆
= ∧ current ∈ Player
∧ turn ∈ Nat

Init2
∆
= ∧ turn = 0
∧ current = “X” X starts

Next2
∆
= ∧ turn ′ = turn + 1
∧ current ′ = Opponent
∧ ∃ i , j ∈ 1 . . N : ∧ board [i , j ] = Empty

∧ board ′[i , j ] = current

EnforceTurns
∆
= Init2 ∧2[Next2]v2

TicTacToe2
∆
= TicTacToe1 ∧ EnforceTurns

Properties we can state at this point:

theorem EnforceTurns ⇒ TurnType

Alternating
∆
= 2[current ′ 6= current ]v2

theorem EnforceTurns ⇒ Alternating

3



3. DetectWin: Detect win or draw and end game

variable win
v3

∆
= 〈v2, win〉

Result
∆
= Player ∪ {“Draw”}

WinType
∆
= win ∈ {Empty} ∪ Result

GameEnd
∆
= win ∈ Result

Line
∆
= {[i ∈ 1 . . N 7→ 〈i , y〉] : y ∈ 1 . . N } horizontal

∪ {[i ∈ 1 . . N 7→ 〈x , i〉] : x ∈ 1 . . N } vertical

∪ {[i ∈ 1 . . N 7→ 〈i , i〉]} ∪ {[i ∈ 1 . . N 7→ 〈i , N − i + 1〉]} diagonal

f ◦ g ∆
= [x ∈ domain g 7→ f [g [x ]]]

BoardLine(line)
∆
= board ◦ line

Won(player)
∆
= ∃ line ∈ Line : BoardLine(line) = [i ∈ 1 . . N 7→ player ]

NoWin
∆
= ¬∃ player ∈ Player : Won(player)′

StopGame
∆
= board ′ = board unchanged board – fails TLC

Init3
∆
= win = Empty

Next3
∆
= ∨ ∧ win = Empty

∧ ∨ ∃ player ∈ Player : Won(player)′ ∧ win ′ = player
∨NoWin ∧ BoardFull ′ ∧ win ′ = “Draw”
∨NoWin ∧ ¬BoardFull ′ ∧ unchanged win

∨ ∧ win ∈ Player
∧ unchanged win
∧ StopGame

DetectWin
∆
= Init3 ∧2[Next3]v3

TicTacToe3
∆
= TicTacToe2 ∧DetectWin

Properties we can state at this point:

theorem DetectWin ⇒WinType

GameEndsWhenPlayerWins
∆
= 2(win ∈ Player ⇒ 2[board ′ = board ] v3) (Temporal formulas containing actions must be of forms 32A or 23A.)

GameEndsWhenPlayerWins
∆
= 2[(win ∈ Player ⇒ unchanged board)]v3 SANY wants parentheses

theorem TicTacToe3⇒ GameEndsWhenPlayerWins

AtLeast5TurnsToWin
∆
= win 6= Empty ⇒ turn ≥ 2 ∗N − 1

theorem TicTacToe3⇒ 2(AtLeast5TurnsToWin)

GameEndsWhenBoardFull
∆
= BoardFull ⇒ GameEnd

theorem TicTacToe3⇒ 2(GameEndsWhenBoardFull)

4



4. AddThirdToWin: Add third mark to win

So far, we’ve specified the rules of the game. Now we start adding tactic rules. This one says that
if a player has two marks in a line they should place the third to win.

But we run into a problem: the tactics may be contradictory, and prioritization is required.
b-threads can be prioritized, and we could simulate that mechanism with with maps of boolean
functions, but that would be overly clever, especially in a simple specification such as this. Instead,
we’ll order the rules by their priority, and explicitly model priorities. This means that new rules
would need to be inserted in the sequence of rules into their right position.

Count(mark , line)
∆
= Cardinality({i ∈ 1 . . N : BoardLine(line)[i ] = mark})

CanWin(player)
∆
= ∃ line ∈ Line : ∧ Count(player , line) = N − 1

∧ Count(Empty , line) = 1

MarkLast(line)
∆
= ∃ i ∈ 1 . . N : ∧ BoardLine(line)[i ] = Empty

∧ board ′[line[i ]] = current

v4
∆
= v3

Init4
∆
= true

Next4
∆
= CanWin(current)⇒

∃ line ∈ Line : Count(current , line) = N − 1 ∧MarkLast(line)

Priority1
∆
= CanWin(current)

AddThirdToWin
∆
= Init4 ∧2[Next4]v4

TicTacToe4
∆
= TicTacToe3 ∧AddThirdToWin

5. BlockOpponentFromWinning: Block the other player if they’re about to win

v5
∆
= v4

Init5
∆
= true

Next5
∆
= CanWin(Opponent) ∧ ¬Priority1⇒

∃ line ∈ Line : Count(Opponent , line) = N − 1 ∧MarkLast(line)

Priority2
∆
= Priority1 ∨ CanWin(Opponent)

BlockOpponentFromWinning
∆
= Init5 ∧2[Next5]v5

TicTacToe5
∆
= TicTacToe4 ∧ BlockOpponentFromWinning

5



6. MarkCenterIfAvailable: Prefer center square

CenterSquare
∆
= 〈(N + 1)÷ 2, (N + 1)÷ 2〉

CenterFree
∆
= board [CenterSquare] = Empty

v6
∆
= v5

Init6
∆
= true

Next6
∆
= (CenterFree ∧ ¬Priority2)⇒ board ′[CenterSquare] = current

Priority3
∆
= Priority2 ∨ CenterFree

MarkCenterIfAvailable
∆
= Init6 ∧2[Next6]v6

TicTacToe6
∆
= TicTacToe4 ∧MarkCenterIfAvailable

Properties we can state at this point:

FirstMarksSquare
∆
= turn = 1⇒ board [CenterSquare] 6= Empty

theorem TicTacToe6⇒ 2(FirstMarksSquare)

7. MarkCornerIfAvailable: Prefer corner square

CornerSquares
∆
= {1, N } × {1, N }

CornerFree
∆
= ∃ corner ∈ CornerSquares : board [corner ] = Empty

v7
∆
= v6

Init7
∆
= true

Next7
∆
= (CornerFree ∧ ¬Priority3)⇒

∃ corner ∈ CornerSquares : ∧ board [corner ] = Empty
∧ board ′[corner ] = current

Priority4
∆
= Priority3 ∨ CornerFree

MarkCornerIfAvailable
∆
= Init7 ∧2[Next7]v7

TicTacToe7
∆
= TicTacToe6 ∧MarkCornerIfAvailable

Properties we can state at this point:

SecondMarksCorner
∆
= turn = 2⇒ ∃ corner ∈ CornerSquares : board [corner ] 6= Empty

theorem TicTacToe7⇒ 2(SecondMarksCorner)

The tactics are sufficient to always force a draw

AlwaysDraw
∆
= (win /∈ Player)

theorem TicTacToe7⇒ 2AlwaysDraw

6



The conjoined spec. In this particular spec a conjunciton of WFvi (Nexti) would work, but as this

is not true in general for BP systems, we only specify liveness for the canonical representation.

TicTacToe
∆
= TicTacToe7

A mechanical translation of TicTacToe into a specification that TLC can handle follows, based
on the equivalences 2A∧2B ≡ 2(A∧B) , 2[A]x ≡ 2(A∨ unchanged x) and propositional logic

equivalences (distributivity of conjunction over disjunction).

In the case of this particular specification, a simpler composition may have sufficed, but I wanted
to see how convenient the general mechanical composition would be.

Compose(NextA, varsA, NextB , varsB)
∆
=

∨NextA ∧NextB
∨ unchanged varsA ∧NextB unchanged must come first due to TLC evaluation limitations

∨ unchanged varsB ∧NextA ditto

Next12
∆
= Compose(Next1, v1, Next2, v2)

Next123
∆
= Compose(Next12, 〈v1, v2〉, Next3, v3)

Next1234
∆
= Compose(Next123, 〈v1, v2, v3〉, Next4, v4)

Next12345
∆
= Compose(Next1234, 〈v1, v2, v3, v4〉, Next5, v5)

Next123456
∆
= Compose(Next12345, 〈v1, v2, v3, v4, v5〉, Next6, v6)

Next1234567
∆
= Compose(Next123456, 〈v1, v2, v3, v4, v5, v6〉, Next7, v7)

vars
∆
= 〈v1, v2, v3, v4, v5, v6, v7〉

Init
∆
= Init1 ∧ Init2 ∧ Init3 ∧ Init4 ∧ Init5 ∧ Init6 ∧ Init7

Next
∆
= Next1234567

TicTacToe0
∆
= Init ∧2[Next ]vars ∧WFvars(Next)

Terminates
∆
= win 6= Empty

theorem TicTacToe0⇒ 3Terminates

theorem TicTacToe0⇒ TicTacToe There’s a difference in liveness so no ≡

7


